Last time:

$$
\begin{equation*}
\langle 0| F(y)\left|\psi_{\bar{p}, \sigma, n}\right\rangle \neq 0 \Rightarrow q_{(n)}=q_{F} \tag{1}
\end{equation*}
$$

Consider now Dirac Lagrangian coupled to electromagnetic field:

$$
\begin{aligned}
\mathscr{Z}= & -\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{2}-\partial^{2} A^{\mu}\right) \\
& +\mathscr{L}_{M}\left(\psi_{e},\left[\partial_{\mu}-i q_{l} A_{\mu}\right] \psi_{e}\right)
\end{aligned}
$$

The current is given by

$$
\gamma^{\mu}=\frac{\delta \mathscr{L}_{M}}{\delta A_{\mu}}
$$

Then the following Green's function in momentum space:

$$
\begin{align*}
& \int d^{4} x d^{4} y d^{4} z e^{-i p \cdot x} e^{-i k \cdot y} e^{+i l \cdot z} \\
& x\langle 0| T\left[J^{m}(x) \psi_{n}(y) \bar{\psi}_{m}(z)\right]|0\rangle \\
&=-i(2 \pi)^{4} q_{n n^{\prime}}^{\prime}(k) T_{n^{\prime} m^{\prime}}^{m}(k, l) S_{n^{\prime} m}^{\prime}(l) \delta^{(4)}(p+k-l) \tag{2}
\end{align*}
$$

electric charge
corresponds to the vertex function:

$$
T^{m}=\sum_{k}^{l} \sum_{k}^{k-l}+\xi_{y}^{k} \cdots \sin +\cdots
$$

where S^{\prime} is the renormalized
Dirac propagator:

$$
\begin{aligned}
& S^{\prime}(k)=\frac{i}{K-m+i \varepsilon}+\frac{i}{k-m+i \varepsilon} \sum^{*}(K) \frac{i}{K-m+i \varepsilon} \\
& +\frac{i}{k-m+i \varepsilon} \Sigma^{*}(k) \frac{i}{k-m+i \varepsilon} \sum^{*}(K) \frac{i}{k-m+i \varepsilon} \\
& +\cdots \\
& =\frac{i}{K-m-\Sigma^{*}(K)}
\end{aligned}
$$

and $\Sigma^{*}(K)$ is computed from diagrams of the form:

S' has following operator expression

$$
\begin{align*}
& i(2 \pi)^{4} S_{n m}^{\prime}(k) \delta^{(4)}(k-\ell) \\
& =\int d^{4} y d^{4} z\langle 0| T\left[\psi_{n}(y) \bar{\psi}_{m}(z)\right]|0\rangle e^{-i k \cdot y} e^{+i l \cdot z} \tag{3}
\end{align*}
$$

In the limit of no interactions:

$$
i S^{\prime}(K) \rightarrow i[K-m+i \varepsilon]^{-1}, \quad \Gamma^{\mu}(K, e) \rightarrow \gamma^{\mu}
$$

We can derive relations between Γ^{m} and S^{\prime} by using the identity:

$$
\begin{align*}
& \frac{\partial}{\partial x^{m}} T\left[\gamma^{m}(x) \psi_{n}(y) \bar{\psi}_{m}(z)\right] \\
= & T\left[\partial_{m} \gamma^{m}(x) \psi_{n}(y) \bar{\psi}_{m}(z)\right] \\
+ & \delta\left(x^{0}-y^{0}\right) T\left[\left[\gamma^{0}(x), \psi_{n}(y)\right] \bar{\psi}_{m}(z)\right] \tag{*}\\
+ & \delta\left(x^{0}-z^{0}\right) T\left[\psi_{n}(y)\left[\gamma^{0}(x), \bar{\psi}_{m}(z)\right]\right]
\end{align*}
$$

where the delta functions arise from time-derivatives of step functions as follows:

$$
\begin{aligned}
T\left[\gamma^{\mu}(x) \psi_{n}(y)\right] & =\theta\left(x^{0}-y^{0}\right) \gamma^{M}(x) \psi_{n}(y) \\
& +\theta\left(y^{0}-x^{0}\right) \psi_{n}(y) \gamma^{\mu}(x) \\
\rightarrow & \frac{\partial}{\partial x^{\mu}} T\left[\gamma^{M}(x) \psi_{n}(y)\right] \\
= & \delta\left(x^{0}-y^{0}\right) \gamma^{0}(x) \psi_{n}(y)-\delta\left(y^{0}-x^{0}\right) \psi_{n}(y) \gamma^{\mu}(x) \\
= & \delta\left(x^{0}-y^{0}\right)\left[\gamma^{0}(x), \psi_{n}(y)\right]
\end{aligned}
$$

and analogously for $\frac{\partial}{\partial x^{m}} T\left[\gamma^{m}(x) \bar{\psi}_{m}(z)\right]$

Current conservation \rightarrow lIst term in (x) vanishes
the other two term are computed by using:

$$
\begin{aligned}
& {\left[\gamma^{0}(\vec{x}, t), \psi_{n}(\vec{y}, t)\right]=-q \psi_{n}(\vec{y}, t) \delta^{(3)}(\vec{x}-\vec{y})} \\
& \left.\left[\gamma^{0}(\vec{x}, t), \bar{\psi}_{n}(\vec{y}, t)\right]=q \bar{\psi}^{(\vec{y}}, t\right) \delta^{(3)}(\vec{x}-\vec{y})
\end{aligned}
$$

$\rightarrow(*)$ becomes:

$$
\begin{aligned}
& \frac{\partial}{\partial x^{\mu}} T\left[\gamma^{\mu}(x) \psi_{n}(y) \bar{\psi}_{m}(z)\right] \\
=- & q \delta^{(4)}(x-y) T\left[\psi_{n}(y) \bar{\psi}_{m}(z)\right] \\
+ & q \delta^{(4)}(x-z) T\left[\psi_{n}(y) \bar{\psi}_{m}(z)\right]
\end{aligned}
$$

Inserting into (2) gives

$$
(l-K)_{\mu} S^{\prime}(K) T(k, l) S^{\prime}(l)=i S^{\prime}(l)-i S^{\prime}(k)
$$

or equivalently

$$
\begin{equation*}
(l-k)_{\mu} T^{\mu}(k, l)=i S^{1-1}(k)-i{s^{\prime}}^{-1}(l) \tag{4}
\end{equation*}
$$

"generalized Ward identity"

In the limit $l \rightarrow K$:

$$
\Gamma^{\mu}(k, k)=i \frac{\partial}{\partial k_{\mu}} S^{\prime^{-1}}(k)
$$

Using

$$
i S^{\prime^{-1}}(k)=K-m-\Sigma^{*}(k)
$$

this gives

$$
\Gamma^{\mu}(k, k)=\gamma^{\mu}+\frac{\partial}{\partial K_{\mu}} \Sigma^{*}(k)
$$

Now renormalization tells us

$$
\begin{aligned}
& \Sigma^{*}(m)=0 \quad \text { and }\left.\quad \frac{\partial \sum^{*}(k)}{\partial k}\right|_{k=m}=0 \\
\rightarrow & \bar{u}_{k}^{\prime} \Gamma^{\prime}(k, k) u_{k}=\bar{u}_{k}^{\prime} \gamma^{m} u_{k}
\end{aligned}
$$

for renormalized Dirac field
This is the reason the contribution to "charge renormalization" by diagrams

cancel!

Gauge invariance
The conservation of electric charge (eq. (1)) can be used to prove gauge inv.
Consider the quantities

$$
\begin{array}{r}
M_{\beta \alpha}^{\mu \mu^{\prime} \cdots}\left(q_{1} q^{\prime}, \cdots\right)=\int d^{4} x \int d^{4} x^{\prime} \cdots e^{-i q \cdot e^{-i} q^{\prime} \cdot x} \\
\\
x\left\langle\psi_{\beta}^{-}\right| T\left[\gamma^{\mu}(x) \gamma^{\mu^{\prime}}\left(x^{\prime}\right) \ldots\right]\left|\psi_{\alpha}^{+}\right\rangle
\end{array}
$$

\rightarrow matrix element of emission (absorbtion) of photons with momenta $q^{m}, q^{\prime \prime} \ldots .$.
in an arbitrary transition $\alpha \rightarrow \rho$
Previously, we had given a diagramatic proof that

$$
\begin{aligned}
q_{\mu} M_{\rho \alpha}^{\mu \mu^{\prime} \cdots}\left(q, q^{\prime}, \cdots\right) & =q_{\mu^{\prime}}^{\prime} M_{\beta \alpha}^{\mu \mu^{\prime}}\left(q, q^{\prime}, \ldots\right) \\
& =\cdots=0
\end{aligned}
$$

Since M is symmetric in the photon lines, it suffices to show the vanishing for contraction with of.

Proof:
Integrating by parts, we have

$$
\begin{align*}
& q_{\mu} M_{\beta \alpha}^{m \mu \cdots}\left(q, q^{\prime}, \cdots\right)=-i \int d^{4} x \int d^{4} x^{\prime} \ldots \\
& x e^{-i q \cdot x} e^{-i q^{\prime} \cdot x^{\prime}} \cdots\left\langle\psi_{\beta}^{-}\right| \frac{\partial}{\partial x^{m}} T\left[g^{\prime}(x) g^{\prime}\left(x^{\prime}\right) \cdots\right]\left|\psi_{\alpha}^{+}\right\rangle \tag{5}
\end{align*}
$$

Using

$$
\begin{aligned}
T\left[\gamma^{M}(x) J^{2}(y)\right] & =\theta\left(x^{0}-y^{0}\right) J^{M}(x) J^{2}(y) \\
& +\theta\left(y^{0}-x^{0}\right) y^{2}(y) J^{M}(x)
\end{aligned}
$$

we get upon taking derivatives

$$
\begin{aligned}
& \frac{\partial}{\partial x^{\mu}} T\left[J^{M}(x) J^{2}(y)\right] \\
= & \delta\left(x^{0}-y^{0}\right) J^{0}(x) J^{2}(y)-\delta\left(y^{0}-x^{0}\right) J^{2}(y) J^{0}(x) \\
= & \delta\left(x^{0}-y^{0}\right)\left[\gamma^{0}(x), J^{2}(y)\right]_{(x *)}\left(T\left[\partial_{\mu} J^{M}(x) \cdots\right]=0\right)
\end{aligned}
$$

For more than two currents, we get equal time commutator for each current aside from $\gamma^{M}(x)$ itself.
Recall

$$
\left[J^{0}(\vec{x}, t), F(\bar{y}, t)\right]=-q_{F} F(\vec{x}, t) \delta^{3}(\vec{x}-\vec{y})
$$

where

$$
q_{F}=\sum_{l} q_{l}\left(\psi_{e} C F\right)-\sum_{l} q_{l}\left(\overline{\psi_{l}} C F\right)
$$

Moreover, $q_{j}=0 \quad\left(7^{n}(y)\right.$ is itself neutral: $\gamma^{\mu} \sim \overline{4}^{m} 4$)

$$
\rightarrow \quad\left[J^{0}(\vec{x}, t), J^{2}(\xi, t)\right]=0
$$

Thus (**) vanishes!

$$
(5) \rightarrow \quad q_{\mu} M_{s \alpha}^{m \mu^{\prime}} \cdots\left(q, q^{\prime}, \ldots\right)=0
$$

Translation invariance
The translation operator P^{μ} has the property

$$
\left[P_{m} G(x)\right]=i \frac{\partial}{\partial x^{m}} G(x)
$$

where $G(x)$ is any local operator we have

$$
\begin{gathered}
P^{\mu} \psi_{\alpha}^{+}=p_{\alpha}^{\mu} \psi_{\alpha}^{+}, \quad P^{\mu} \psi_{s}^{-}=P_{\beta}^{-} \psi_{s}^{-} \\
\rightarrow\left(p_{\beta m}-p_{\alpha \mu}\right)\left\langle\psi_{\beta}^{-}\right| T\left[O_{a}\left(x_{1}\right) O_{b}\left(x_{2}\right) \ldots\right]\left|\psi_{\alpha}^{+}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& =\left\langle\psi_{\beta}^{-}\right|\left[P_{m} T\left[O_{a}\left(x_{1}\right) O_{b}\left(x_{2}\right) \cdots\right]\left|\psi_{\alpha}^{+}\right\rangle\right. \\
& =i\left(\frac{\partial}{\partial x_{1}^{m}}+\frac{\partial}{\partial x_{2}^{m}}+\cdots\right)\left\langle\psi_{s}^{-}\right| T\left[O_{a}\left(x_{1}\right) O_{b}\left(x_{2}\right) \cdots\right]\left|\psi_{\alpha}^{+}\right\rangle
\end{aligned}
$$

appying to

$$
T\left[O_{a}\left(x_{1}\right) O_{b}\left(x_{2}\right) \cdots\right]=J^{n}(x)
$$

we find

$$
\begin{gathered}
\left\langle\psi_{\overrightarrow{p^{\prime}}, \sigma^{\prime}}\right| J^{m}(x)\left|\psi_{\vec{p}, \sigma}\right\rangle=e^{i\left(p^{\prime}-p\right) \cdot x}\left\langle\psi_{\vec{p}^{\prime} \sigma^{\prime}}\right| \gamma^{\prime}(0)\left|\psi_{\vec{p} \sigma}\right\rangle \\
\rightarrow\left\langle\psi_{\overrightarrow{p^{\prime}} \sigma^{\prime}}\right| Q\left|\psi_{\vec{p}, \sigma}\right\rangle=\int d^{3} x\left\langle\psi_{\overrightarrow{p^{\prime}} \boldsymbol{\sigma}^{\prime}}\right| \gamma^{0}(x)\left|\psi_{p o \sigma}\right\rangle \\
=(2 \pi)^{3} \delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right)\left\langle\psi_{\vec{p}^{\prime} \sigma^{\prime}}\right| \gamma^{0}(0)\left|\psi_{p, \sigma}\right\rangle \\
\rightarrow\left\langle\psi_{\vec{p} \sigma^{\prime}}\right| \gamma^{0}(0)\left|\psi_{\vec{p}, \sigma}\right\rangle=(2 \pi)^{-3} q \delta_{\sigma^{\prime} \sigma}
\end{gathered}
$$

